Electrical and optical properties III

Composites

Outline

- Mixtures of two or more materials on the nano- or micro scale
- Metal-insulator mixtures most studied
- DC conductivity
- AC conductivity, percolation, fractals
- Optical properties, effective medium theories
- Light scattering

Effective physical properties

- "Mixing rules" or effective medium theories
- Common description for:
- Optical and electrical properties (complex dielectric permittivity or refractive index)
- Magnetic permeability
- Thermal conductivity
- Mechanical properties (bulk and shear moduli)

Two-phase composites

• Case of effective dielectric permittivity. The simplest mixing rule (phases A and B):

$$\overline{\varepsilon} = f_A \varepsilon_A + f_B \varepsilon_B$$

- Volume fractions of A and B: f_A , f_B
- During the 1800's and early 1900's many such relations were derived
- Mosotti, Clausius, Maxwell, Lorenz, Lorentz, Rayleigh, Maxwell Garnett, Wiener, Wagner, Bruggeman...

Microstructure in very important!

• Ordered and disordered

• Different particle shapes

Particles

Rigorous Wiener bounds

• Parallel capacitors

$$\overline{\varepsilon} = f_A \varepsilon_A + f_B \varepsilon_B$$

• Series capacitors

$$\overline{\varepsilon}^{-1} = f_A \varepsilon_A^{-1} + f_B \varepsilon_B^{-1}$$

DC conductivity

- Composites from materials with widely differing resistivities
- Metal-insulator, metal-semiconductor
- By tailoring the composition every intermediate resistivity can be achieved
- Metal-insulator transition percolation threshold
- Metallic conduction above the percolation threshold
- Tunneling between metal particles below the percolation threshold

Ex: AI-Ge composites

- Low T sharp metalinsulator transition at ~50 % Al
- High critical volume fraction – Ge tends to coat the AI particles
- Room temp. we see a rising tunneling contribution below the transition

Ex: W-Al₂O₃ composites

- Resistivity at T=300K
- Metal-insulator transition at f~0.5. Insulator coats metal particles
- Annealing particle size increases – larger separations between particles – much lower tunneling contribution – sharper transition
- Inset: W grain size

Source: Abeles et al

Ex: Co-Al₂O₃ composites

- Steep rise at f ~0.2 to 0.3
- Connected with the tunneling contribution
- The temperature coefficient of resistance changes sign at f~0.7
- Smooth crossover between tunneling and metallic conduction

Tunneling between metal particles

- Electron tunneling the particles become charged
- Charging energy (s~r)

$$E_{c} = \frac{e^{2}}{4\pi\varepsilon_{0}\varepsilon_{i}} \frac{s/2r}{s+r} \sim C/s$$

• Low applied fields

 $\sigma = \sigma_0 \exp(-2\alpha s - E_c / k_B T)$

• Max of σ when

 $s_M = (C/2\alpha k_B T)^{1/2}$

- Mott type expression $\sigma = \sigma_0 \exp(-(T_p/T)^{1/2})$
- Different at very low temperatures

Ex: $Au-Al_2O_3$

Experiments often show crossover to VRH behaviour

Source: Khatami, Thesis, 1985

AC electrical properties

- Low f insulating region: Particle-particle tunneling as well as localized states in the insulator
- Complex behaviour typical of insulators
- Intermediate f: Tunneling conductivity, "quasidc"
- High f metallic region: Metallic conduction
- Metal-insulator crossover at the percolation threshold: Scaling behaviour as predicted by percolation theory

Percolation theory: ac conductivity

- Metal-insulator composites: random structure of conducting and insulating regions
- Can be mapped onto a random RC-network
- Percolation theory: DC conductivity and dielectric constant close to the percolation threshold, $f_c = \sigma_{DC} \sim (f f_c)^t = \varepsilon_{DC} \sim |f f_c|^{-s}$
- Percolation theory: Frequency dependence

$$\sigma(\omega) \sim \omega^{t/(t+s)} \quad , \omega >> \sigma_m \left| f - f_c \right|^{t+s} / \varepsilon_i$$

Experiments on composites

- Critical exponents (theory)
- t = 1.9 +/- 0.1
- s = 0.73 +/- 0.01
- u = t/t+s = 0.72 +/-0.02
- Frequency exponent u is influenced by distributions of resistances and Coulomb interactions

Data from: Song et al; Brantervik et al.

Optical properties

- We consider two component materials
- If the particle size << wavelength of light then the E- and H-fields are almost constant over a length of the order of a particle size
- Materials treated as homogeneous on length scales ~ λ
- Quasistatic approximation (electrostatics sufficient for small particles)
- Basis of effective medium theories (EMT)

Spheres in continuous matrix

- Consider dielectric function (permittivity)
- Static case (ω=0)
- Quasistatic approx:
- Can be extended to frequency dependent case as long as max (n) 2πr/λ<<1 where max (n) is the largest of the refractive indices

- Particles of A in matrix B
- Electric field

$$E_A = E_B + E_p = E_B - P / 3\varepsilon_0$$

- Compare the average fields E_{av} and D_{av}
- The effective dielctric permittivity is given as (Maxwell, 1872)

$$\overline{\varepsilon} = D_{av} / E_{av}$$

Complex dielectric function

- Optical transmittance and reflectance depends on the effective complex and frequency-dependent dielectric function
- Different microstructures lead to different expressions for the complex $\boldsymbol{\epsilon}$
- Microstructural models: Random Unit Cells
- Limit theorems give bounds in the complex plane
- Influence of microstructure can be represented by a spectral density.

Random Unit Cells (RUC)

• Two often used simple cases:

Derivation of EMT's

- RUC's can be used to systematically derive EMT's
- They account for the important aspects of a given microstructure
- Can be extended to nonspherical shapes
- Criterion: The RUC should be invisible in an optical experiment when embedded in the effective medium
- Light scattering S=0
- Maxwell Garnett: S(coated sphere)=0
- Bruggeman: $f_A S_A(sphere) + f_B S_B(sphere) = 0$
- Rule of thumb: $r < \lambda/20$

Some simple EMT's

Maxwell Garnett (MG)
theory

$$\overline{\varepsilon} = \varepsilon_B \frac{\varepsilon_A + 2\varepsilon_B + 2f_A(\varepsilon_A - \varepsilon_B)}{\varepsilon_A + 2\varepsilon_B - f_A(\varepsilon_A - \varepsilon_B)}$$

- Particles in continuous matrix (often amorphous)
- No percolation threshold
- Can be extended by incorporating information from pair distribution function

Bruggeman (BR) theory

$$f_A \frac{\varepsilon_A - \overline{\varepsilon}}{\varepsilon_A + 2\overline{\varepsilon}} + (1 - f_A) \frac{\varepsilon_B - \overline{\varepsilon}}{\varepsilon_B + 2\overline{\varepsilon}} = 0$$

- Random mixtures of A and B
- Percolation threshold f_c=1/3 for spheres
- Different for other shapes
- If RUC's are coated spheres: f_c=0.50

Physical interpretation

- Mixture of metal and insulator nanocrystals: Random distribution – BR theory. Not good close to f_c, which should be at ~0.15.
- Insulator crystallites << metal ones: They will preferentially be situated between the metal particles, and hence f_c increases.
- Metal nanocrystals and amorphous insulator: Metal particles preferentially coated by insulator. MG theory is a good approximation at low f, and we have a high f_c

Rigorous bounds on complex $\boldsymbol{\epsilon}$

• Wiener bounds: Only ϵ_{A} and ϵ_{B} known

$$\overline{\varepsilon} = f_A \varepsilon_A + f_B \varepsilon_B \qquad \overline{\varepsilon}^{-1} = f_A \varepsilon_A^{-1} + f_B \varepsilon_B^{-1}$$

- Arcs/lines in the complex plane encompassing an allowed region
- Hashin-Shtrikman bounds: Also f_A and f_B known

$$\begin{split} \overline{\varepsilon} &= \varepsilon_B \frac{L\varepsilon_A + (1-L)\varepsilon_B + (1-L)f_A(\varepsilon_A - \varepsilon_B)}{L\varepsilon_A + (1-L)\varepsilon_B - Lf_A(\varepsilon_A - \varepsilon_B)} & 0 \leq L \leq 1 \\ \overline{\varepsilon} &= \varepsilon_A \frac{L\varepsilon_B + (1-L)\varepsilon_A + (1-L)f_B(\varepsilon_B - \varepsilon_A)}{L\varepsilon_B + (1-L)\varepsilon_A - Lf_B(\varepsilon_B - \varepsilon_A)} \end{split}$$

Bounds for isotropic materials

• More narrow bounds still (Bergman-Milton)

$$\overline{\varepsilon} = \frac{\varepsilon_A \varepsilon_B + 2\varepsilon_h (f_A \varepsilon_A + f_B \varepsilon_B)}{2\varepsilon_h + f_A \varepsilon_B + f_B \varepsilon_A} \qquad \qquad \varepsilon_h = x\varepsilon_A + (1 - x)\varepsilon_B \quad or \\ \varepsilon_h^{-1} = x\varepsilon_A^{-1} + (1 - x)\varepsilon_B^{-1}$$

- The parameter x (0<x<1) can be obtained from integrals over the pair and three-point distribution functions of the composite
- If x is known another set of bounds and so on...

Example of bounds

- ϵ_A and ϵ_B given
- Wiener bounds
- HS bounds (anisotropic in general)
- BM bounds (isotropy)
- Next order bounds with x=0.1

Isotropic materials

- Isotropic bounds and some EMT's
- Input values as in previous figure
- MG Maxwell Garnett
- BR Bruggeman
- PS Ping Sheng (BR for coated spheres)
- BH Bruggeman-Hanai

Exp: Transmittance

- Clear-cut case: Noble metal composites
- Ex: Ag- SiO₂
- Metallic behaviour: <25 % SiO₂
- Dielectric behaviour: >35 % SiO₂
- Localized plasmon (LP) absorption at $\lambda \sim 400-500$ nm
- Sharp LP predicted by MG theory

Source: Abeles et al

Ex: Au-SiO₂

- Dielectric and metallic regions
- Metal-insulator transition around f_{Au}~0.6 to 0.7
- Localized plasma absorption at 500-600 nm
- Diminishes in the metallic region
- Percolation threshold higher than most theories predict (PS at ~0.5 may be OK)

Exp: Dielectric function

• Au-Al₂O₃ (amorphous) • $\varepsilon = (n+ik)^2$

Source:Craighead and Sievers

Ex: Au-MgO

Source: Craighead and Sievers

Ex: Co-Al₂O₃

Transition region

- The distinction between MG and BR type composites is very useful for the dielectric region at low f.
- EMT's do not give a good description of the percolation region: Difficult to model exp f_c and critical exponents are not correct in BR theory
- Close to f_c the percolation correlation length can be $>\lambda$ and then the effective medium concept will fail.
- "Optical percolation": Descriptions with scaling theories, fractal impedance networks or general LCR networks have been attempted.

Bergman's spectral density

 It is possible to decouple the effect of nanostructure on the dielectric function from the properties of the phases A and B

$$\overline{\varepsilon} = \varepsilon_B (1 + \int_0^1 \frac{g(x)}{(\varepsilon_B / (\varepsilon_A - \varepsilon_B)) + x} dx)$$

• Sum rules for the spectral density g(x)

$$g(0) + \int_{0^+}^{1} g(x) dx = f_A$$
 $\int_{0}^{1} xg(x) dx = (1 - f_A)L$

- We have separated out the percolation strength g(0)
- But relation between g(x) and nanostructure not known!

Spectral density function (SDF)

- This relation is in principle "exact" and g(x) is determined by the detailed nanostructure.
- The SDF g(x) can only be computed if the nanostructure is known exactly
- Even so it is not known how to compute it, except in simple cases
- It is however possible to obtain g(x) from inversion of experimental data (dielectric function from R,T or ellipsometry) in a wide wavelength range
- Exp. data sensitive to g(x) when the real part of ϵ_A is negative and its absolute value is larger than that of the imaginary part

Ex: Co-Al₂O₃ composite

- From R and T measurements: $300 \text{ nm} < \lambda < 2500 \text{ nm}$
- Volume fractions of Co, f: a:0.03, b:0.07, c:0.12, d:0.19, e:0.25, f:0.26, g:0.37, h:0.52, i:0.56, j:0.57, k:0.71.
- Low f: Peak corresponding to almost spherical particles
- f>0.15: Three or four peaks (structural resonances)
- Percolation strength cannot be reasonably estimated from optical data

Ex: KCI-diamond composite

- 20 % Diamond
- IR reflectance

- SDF compared to Bruggeman theory
- x g(x) is plotted

Source: Day and Sievers

A general effective medium theory?

- Use description of nanostructure in terms of local density distributions and local percolation probabilities
- Generalization of Bruggeman theory:

$$\int_{0}^{1} \left[\lambda(f,L) \frac{\varepsilon_{c}(f) - \bar{\varepsilon}}{\varepsilon_{c}(f) + 2\bar{\varepsilon}} + (1 - \lambda(f,L)) \frac{\varepsilon_{nc}(f) - \bar{\varepsilon}}{\varepsilon_{nc}(f) + 2\bar{\varepsilon}} \right] \mu(f,L) df = 0$$

- Evaluate for L where the entropy function has a minimum
- Percolating cells index c
- Non-percolating cells index nc
- $L \rightarrow 0$: Usual Bruggeman expression
- L \rightarrow infinity: No L-dependence; replace f by <f>
- Percolation threshold determined by $\lambda(f,L)$ or $\lambda(<f>)$

Some applications

- Selectively solar absorbing coatings for solar collectors: Transition metal particles in an insulator matrix, high f (~0.5)
- Modeling of rough surfaces, e.g. in ellipsometry
- Columnar structures or "sculptured" thin films: Extension of EMT's to anisotropic structures
- High voltage insulation field grading materials
- C-black and C-fiber composites (electrical properties)
- Thermal insulation
- Porous materials: Geological applications, cement