Electrical and optical
properties Il

Composites



Outline

Mixtures of two or more materials on the
nano- or micro scale

Metal-insulator mixtures most studied
DC conductivity
AC conductivity, percolation, fractals

Optical properties, effective medium
theories

Light scattering



Effective physical properties

"Mixing rules” or effective medium theories
Common description for:

Optical and electrical properties (complex
dielectric permittivity or refractive index)

Magnetic permeabillity
Thermal conductivity

Mechanical properties (bulk and shear
moduli)



Two-phase composites

Case of effective dielectric permittivity. The
simplest mixing rule (phases A and B):

&= te,+ foeg

Volume fractions of A and B: f,, fg

During the 1800’s and early 1900’s many
such relations were derived

Mosotti, Clausius, Maxwell, Lorenz, Lorentz,
Rayleigh, Maxwell Garnett, Wiener, Wagner,
Bruggeman...



Microstructure In very important!

* Ordered and disordered  « Different particle shapes
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Rigorous Wiener bounds
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DC conductivity

Composites from materials with widely
differing resistivities
Metal-insulator, metal-semiconductor

By tailoring the composition every
Intermediate resistivity can be achieved

Metal-insulator transition — percolation
threshold

Metallic conduction above the percolation
threshold

Tunneling between metal particles below the
percolation threshold




Ex: Al-Ge composites
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« Low T — sharp metal-
Insulator transition at
~50 % Al

e High critical volume
fraction — Ge tends to
coat the Al particles

e Room temp. — we see
a rising tunneling
contribution below the
transition
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Ex: W-Al,O, composites

Resistivity at T=300K

Metal-insulator transition
at f~0.5 . Insulator coats
metal particles

Annealing — particle size
Increases — larger
separations between
particles — much lower
tunneling contribution —
sharper transition

Inset: W grain size
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Ex: Co-Al,O; composites
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Tunneling between metal particles

* Electron tunneling — the —
particles become charged

« Charging energy (s~r)
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* Lowapplied fields * Mott type expression

= o, exp(-2as—E_[k.T
O =0, p( c B ) c=0, eXp(—(Tp /T)l/z)

« Max of c when .
axoroe « Different at very low

sw = (C/20ak,T)" temperatures



Ex: Au-Al,O,

Experiments often show crossover to VRH behaviour
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AC electrical properties

Low f — Insulating region: Particle-particle
tunneling as well as localized states In the
iInsulator

Complex behaviour typical of insulators

Intermediate f: Tunneling conductivity, "quasi-
dC”

High f — metallic region: Metallic conduction

Metal-insulator crossover at the percolation
threshold: Scaling behaviour as predicted by
percolation theory



Percolation theory: ac conductivity

Metal-insulator composites: random structure of
conducting and insulating regions

Can be mapped onto a random RC-network

Percolation theory: DC conductivity and
dielectric constant close to the percolation

threshold, f. oo~ (f—f) e ~|f - fc‘_s

Percolation theory: Frequency dependence
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Experiments on composites

Data from: Song et al; Brantervik et al.

Critical exponents
(theory)

t=1.9+/-0.1
s=0.73 +/-0.01

u=th+s=0.72 +/-
0.02

Freguency exponent
u is influenced by
distributions of
resistances and
Coulomb interactions
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Optical properties

We consider two component materials

If the particle size << wavelength of light then
the E- and H-fields are almost constant over a
length of the order of a particle size

Materials treated as homogeneous on length
scales ~ A

Quasistatic approximation (electrostatics
sufficient for small particles)

Basis of effective medium theories (EMT)



Spheres In continuous matrix

Consider dielectric
function (permittivity)

Static case (»=0)
Quasistatic approx:

Can be extended to
frequency dependent
case as long as

max (n) 2nr/A<<1

where max (n) is the
largest of the refractive
Indices

e Particles of A In matrix B
e Electric field

E,=Eg,+E, =E, —P/3s,

« Compare the average
fields E_, and D_,

 The effective dielctric
permittivity Is given as
(Maxwell, 1872)

¢=D,/E,



Complex dielectric function

Optical transmittance and reflectance depends on
the effective complex and frequency-dependent
dielectric function

Different microstructures lead to different
expressions for the complex ¢

Microstructural models: Random Unit Cells
Limit theorems give bounds in the complex plane

Influence of microstructure can be represented by a
spectral density.



Random Unit Cells (RUC)

 Two often used simple cases:

Separated-grain structure Aggregate structure
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Derivation of EMT’s

RUC'’s can be used to systematically derive EMT’s

They account for the important aspects of a given
microstructure

Can be extended to nonspherical shapes

Criterion: The RUC should be invisible in an optical
experiment when embedded in the effective medium

Light scattering S=0

Maxwell Garnett: S(coated sphere)=0
Bruggeman: f,S,(sphere)+f;Sg(sphere)=0
Rule of thumb: r <~ A/20



Some simple EMT's

 Maxwell Garnett (MG) « Bruggeman (BR) theory
theory
En —&
_ Ent285+2F,(6,—63) 1:A Ep+2E T (1 fA) gB+28 =0

E=¢&
i Ept265 — T,(60—&5)

e Random mixtures of A

e Particles in continuous and B
matrix (often amorphous) Percolation threshold
 No percolation threshold f.=1/3 for spheres
» Can be extended by « Different for other shapes
incorporating information If RUC’s are coated
from pair distribution spheres: f.=0.50

function



Physical interpretation

o Mixture of metal and insulator nanocrystals:
Random distribution — BR theory. Not good
close to f,, which should be at ~0.15.

 |nsulator crystallites << metal ones: They will
oreferentially be situated between the metal
particles, and hence f, increases.

« Metal nanocrystals and amorphous insulator:
Metal particles preferentially coated by
iInsulator. MG theory is a good approximation
at low f, and we have a high f




Rigorous bounds on complex ¢

Wiener bounds: Only ¢, and gz known

g="Te,+ fie sl_f ot -1
AcA T 1pén g =te, + 16,

Arcs/lines in the complex plane encompassing
an allowed region
Hashin-Shtrikman bounds: Also f, and fz known
s, Le, +(Q—L)e; +(@A—-L)f (e, —&5)
® Ley+(A-L)g, —Lf, (4 —¢5)
S, Leg +(1-L)e,+(1-L)fo(s5 —&,)
Leg +(1—-L)e, — Lfs (g5 —€4)

O<L<1




Bounds for Isotropic materials

* More narrow bounds still (Bergman-Milton)

Encg +28, (T, + Toeg) g =x&,+(1—-X)g, oOr

26, + Treg + 156, g =xe, +(1-X)eg "

E =

 The parameter x (0<x<1) can be obtained from
Integrals over the pair and three-point
distribution functions of the composite

e If XIS known — another set of bounds and so
on...



Example of bounds

ea and gz given
Wiener bounds
HS bounds
(anisotropic in
general)

BM bounds

(Isotropy)
Next order

bounds with
x=0.1




Isotropic materials

Isotropic bounds and
some EMT's

Input values as in
previous figure

MG — Maxwell Garnett
BR — Bruggeman

PS — Ping Sheng (BR
for coated spheres)

BH - Bruggeman-
Hanal

N

10




Exp: Transmittance

Clear-cut case: Noble
metal composites

Ex: Ag- SIO,

Metallic behaviour: <25 %
SiO,

Dielectric behaviour: >35
% SIO,

Localized plasmon (LP)

absorption at A ~ 400-500
nm

Sharp LP predicted by
MG theory

Source: Abeles et al
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Ex: Au-SIO,

D= T T 1 T T 1 ! U
2323-29 85% SI0, (2ook)

— 23z3.

232310 4i% sio, 1700k)

Dielectric and metallic
regions

Metal-insulator transition
around f,,~0.6 to0 0.7

Localized plasma Al oo )
absorption at 500-600 nm ) oo
Diminishes in the metallic g L o2t

region
Percolation threshold
higher than most theories

predict (PS at ~0.5 may be
OK)

T

Source: Abeles et al
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Exp: Dielectric function

1,05 (amorphous)
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Ex: Au-MgO

Mixture of nanocrystals e c=(n+ik)?2
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Ex: Co-Al,O,

 Small f: MG quite * Vis-NIR-IR data
good
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Transition region

The distinction between MG and BR type composites is
very useful for the dielectric region at low f.

EMT’s do not give a good description of the percolation
region: Difficult to model exp f, and critical exponents are
not correct in BR theory

Close to f. the percolation correlation length can be >\
and then the effective medium concept will fail.

"Optical percolation”. Descriptions with scaling theories,
fractal impedance networks or general LCR networks
have been attempted.



Bergman’s spectral density

It is possible to decouple the effect of nanostructure on
the dielectric function from the properties of the phases
A and B

£ =& (l+j 9(x) dx)

o (65 /(64— &35)) +X
Sum rules for the spectral density g(x)
9(0)+ [g()dx=1f,  [xg(x)dx=(-f,)L

We have separated out the percolation strength g(0)
But relation between g(x) and nanostructure not known!



Spectral density function (SDF)

e This relation is in principle "exact” and g(x) Is
determined by the detailed nanostructure.

 The SDF g(x) can only be computed if the
nanostructure i1s known exactly

e Even so it is not known how to compute it, except in
simple cases

e Itis however possible to obtain g(x) from inversion of
experimental data (dielectric function from R, T or
ellipsometry) in a wide wavelength range

e EXp. data sensitive to g(x) when the real part of ¢, Is
negative and its absolute value is larger than that of
the imaginary part



Ex: Co-Al,O; composite

From R and T measurements:
300 nm < A <2500 nm

Volume fractions of Co, f:
a:0.03, b:0.07, c:0.12, d:0.19,
e:0.25, 1:0.26, g:0.37, h:0.52,
1:10.56, J:0.57, k:0.71.

Low f: Peak corresponding to
almost spherical particles

f>0.15: Three or four peaks
(structural resonances)

Percolation strength cannot be
reasonably estimated from
optical data

109, [91]
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Source: Tuncer and Niklasson



Ex: KCl-diamond composite

20 % Diamond « SDF compared to

* IR reflectance Bruggeman theory
e X g(x) Is plotted
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Source: Day and Sievers



A general effective medium theory?

* Use description of nanostructure in terms of local density
distributions and local percolation probabilities

» Generalization of Bruggeman theory:

1

[laCf 20 s @-act, L) 20 | u(f, Lydf =0
0

« Evaluate for L where the entropy function has a minimum

» Percolating cells — index ¢

* Non-percolating cells — index nc

L - 0: Usual Bruggeman expression

 L-> infinity: No L-dependence; replace f by <f>

» Percolation threshold determined by A(f,L) or A(<f>)



Some applications

Selectively solar absorbing coatings for solar collectors:
Transition metal particles in an insulator matrix, high f
(~0.5)

Modeling of rough surfaces, e.g. in ellipsometry

Columnar structures or "sculptured” thin films: Extension
of EMT’s to anisotropic structures

High voltage insulation — field grading materials
C-black and C-fiber composites (electrical properties)
Thermal insulation

Porous materials: Geological applications, cement
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